Search results

Search for "enolonium species" in Full Text gives 1 result(s) in Beilstein Journal of Organic Chemistry.

Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones

  • Keshaba N. Parida,
  • Gulab K. Pathe,
  • Shimon Maksymenko and
  • Alex M. Szpilman

Beilstein J. Org. Chem. 2018, 14, 992–997, doi:10.3762/bjoc.14.84

Graphical Abstract
  • challenge in organic synthesis. We herein report that umpolung of a ketone trimethylsilyl enol ether (1 equiv) to form a discrete enolonium species, followed by addition of as little as 1.2–1.4 equivalents of a second trimethylsilyl enol ether, provides an attractive solution to this problem. A wide array
  • of enolates may be used to form the 1,4-diketone products in 38 to 74% yield. Due to the use of two TMS enol ethers as precursors, an optimization of the cross-coupling should include investigating the order of addition. Keywords: 1,4-diketones; enolates; enolonium species; hypervalent iodine
  • lithium enolate followed by a second SET step to complete the transformation (Scheme 1a) [16][17]. A different approach, developed by Maulide, relies on the highly efficient umpolung of amides into enolonium species using triflic anhydride, a pyridine base and pyridine N-oxides (Scheme 1b). These
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2018
Other Beilstein-Institut Open Science Activities